skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ezendu, Sophia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 20, 2026
  2. Free, publicly-accessible full text available August 1, 2026
  3. Abstract Plastic transformations are critical to ongoing recycling and upcycling efforts, but the complexity of the reactions makes it difficult to understand the effect of individual factors on reaction rates and product distributions experimentally. In this work, we report on a multiscale simulation framework for studying polymer transformations that incorporates affordable high‐level coupled cluster calculations combined with benchmarked density functional theory calculations, detailed conformer search, and lattice‐based kinetic Monte Carlo simulations to provide the temporal and spatial evolution of the polymer during transformations. Our framework can match experimentally observed reaction times within an order of magnitudewithoutany parameter estimation in base‐assisted dehydrochlorination of polyvinyl chloride. We determine that the E2 reaction mechanism dominates the reaction and demonstrate that different structural defects can inhibit or promote directional polyene growth as well as affect the structure of the dehydrochlorination product. 
    more » « less